
Reducing Carbon Emission by
Minimizing Steel Waste
ENGM.204-SP24: Data Analytics Project Lab

BY:
KISHORE K, PRANAV D, ROSHNI G, VIBHA V K

https://canvas.dartmouth.edu/courses/64822

Team RelaxedTherm

Roshni Govind
Vibha Visvanathan

Kamala
Pranav

Dharmadhikari
Kishore Kumaran

MEM’25

Deloitte USI - Business
Analyst (2022-23)

B.E Chemical
Engineering (2022)

MEM’25

B.Tech Information
Technology (2023)

MEM’25

B.Tech Computer
Science (2023)

MSCS’25

Amadeus Labs - SDE 2
(2021-2023)

B.Tech Computer
Science (2021)

Using our Autoencoder-Random Forest model, we were able to
predict the strategies that give the maximum utilization of steel

sheets to reduce carbon waste with an MAE of ~6%

Our derived outcomes

1

2

4

3

5

Agenda
Problem Statement

Demo of Result

Data Cleaning

Data Preprocessing

Model Implementation

6 Result and Future Scope

Hypertherm wants to maximize plate utilization through optimal
nesting strategy

1
Problem Statement

2
Demo

3
Data Cleaning

5
Results and ConclusionModel Implementation

4 6
Data Preprocessing

There are 17 strategies available for nesting parts

on a steel plate, considering factors such as sheet

dimensions and part dimensions.

Each strategy produces a different nesting pattern,

leading to varying levels of sheet utilization.

The objective is to determine the optimal part

placements to maximize the utilization of the

sheet.

Problem Statement

Hypertherm aims to leverage AI to improve part nesting on
steel sheets, exceeding current utilization rates to help

customers reduce carbon footprints and cut scrap costs.

1
Problem Statement

2
Demo

3
Data Cleaning

5
Results and ConclusionModel Implementation

4 6
Data Preprocessing

We identified two critical pain points in Hypertherm's workflow: time
consumed by the software and non-optimal strategy selection, both of which
significantly contributed to low raw material utilization.

1
Problem Statement

2
Demo

3
Data Cleaning

5
Results and ConclusionModel Implementation

4 6
Data Preprocessing

Demo

1
Problem Statement

2
Demo

3
Data Cleaning

5
Results and ConclusionModel Implementation

4 6
Data Preprocessing

Data Cleaning Data
Preprocessing

Model
Implementation

1

Our solution

32

1
Problem Statement

2
Demo

3
Data Cleaning

5
Results and ConclusionModel Implementation

4 6
Data Preprocessing

 Data Cleaning and Preprocessing

1
Problem Statement

2
Demo

3
Data Cleaning

5
Results and ConclusionModel Implementation

4 6
Data Preprocessing

The first step to our Solution was cleaning the Data acquired from Hypertherm
and align it to our use case.

1
Problem Statement

2
Demo

3
Data Cleaning

5
Results and ConclusionModel Implementation

4 6
Data Preprocessing

To build our clean dataset we removed Erroneous entries through Null value
Handling, Outlier Tolerance, and Value Standardization

3 GB OF DATA

Nest Data

Parts Data
30 MILLION ROWS

8.7 MILLION ROWS

Pre-cleaning Metrics

1.1 GB OF DATA

Nest Data

Parts Data
11 MILLION ROWS

3.8 MILLION ROWS

Post-cleaning Metrics

1
Problem Statement

2
Demo

3
Data Cleaning

5
Results and ConclusionModel Implementation

4 6
Data Preprocessing

We combined the Parts data and Nest data tables since it was critical for us to
aggregate parts dimension and utilisation data to train the model.

3 GB OF DATA

Nest Data

Parts Data
30 MILLION ROWS

8.7 MILLION ROWS

Why ixJobSummary?

Consistency and Data Consolidation: The ixJobSummary
metric remained consistent across both tables, facilitating a
unified dataset for reliable comparison and analysis.

Model Training Efficiency: It provided a high-level overview
and helped streamline the model training process by
consolidating data from multiple sources.

1
Problem Statement

2
Demo

3
Data Cleaning

5
Results and ConclusionModel Implementation

4 6
Data Preprocessing

We detected the following Anomalies while cleaning the data.

Nest Table:

Rows with dCropUtil = 0
Rows with dPartArea = 0
Rows with dTrueArea = 0
Rows with dLengthUsed = 0 and dLengthUsed < 0
Rows with dWidthUsed = 0 and dWidthUsed < 0
Rows with cParts = 0
Rows with fStrategies outside of 17 strategies defined in the problem statement
In some rows, dLengthUsed and dWidthUsed is more than the dLength and dWidth, so we selected a tolerance of 2 and deleting rows where the deviation is
more than this, and correcting the values within this tolerance
dCroputil calculated based on dTrueArea for over 60% of data and based on dArea for the remaining records. Standardized to calculation based on dTrueArea
based on feedback from Hypertherm
Rows where dPartArea is greated than dTrueArea

 Part Table:

Rows with dLength = 0 and dLength < 0
Rows with dWidth = 0 and dWidth < 0
Rows with dArea = 0 and dArea < 0
Rows with cNested = 0 and cNested < 0

 Finally, using number of parts and area of each part in a job from the Part table and matching it with the number of nested parts in all the nests
 within a job and area of nested parts within a job to ensure synergy between Part and Nest table.

1
Problem Statement

2
Demo

3
Data Cleaning

5
Results and ConclusionModel Implementation

4 6
Data Preprocessing

The next step involved aggregating the cleaned data to gain a comprehensive
overview of the sheet and part specifications, which allowed for more effective
model training.

1
Problem Statement

2
Demo

3
Data Cleaning

5
Results and ConclusionModel Implementation

4 6
Data Preprocessing

Model Implementation

Training Individual Models for Each Strategy:
Each model learns the particular nuances of its assigned strategy
By capturing unique data patterns and within each strategy, the
models can provide less MAE
Segregating models prevents interference between different data
distributions.

Prediction Workflow for New Data
The standardized data is fed into the corresponding model tailored
for each strategy
Predictions of `CropUtil` are collected from all the strategy-specific
models.
The predictions are then ranked to identify the top 3 strategies with
the highest predicted utilization.

Strategy-specific models improve utilization predictions by learning nuances and
preventing cross-strategy interference

1
Problem Statement

2
Demo

3
Data Cleaning

5
Results and ConclusionModel Implementation

4 6
Data Preprocessing

Why Linear Regression?
Most Commonly used model for predictions, easy to implement, baseline
model

How the Model Works:
The data is grouped by different strategies, resulting in separate datasets for
each strategy. We train individual linear regression models on these strategy-
specific datasets to predict utilization tailored to each strategy. Each model is
then evaluated with new data, and final utilization predictions are generated
accordingly

Performance:
The average MAE for the LR models of all the strategies averages out to 11.36%.

Model 1: Linear Regression Model

Grouped data LR Model Utilization Prediction Choosing top 3 Strategies

1
Problem Statement

2
Demo

3
Data Cleaning

5
Results and ConclusionModel Implementation

4 6
Data Preprocessing

Model 2: Artificial Neural Networks (ANN)
Why ANN?
ANNs can automatically learn and extract significant features from the raw
input data through the hidden layers, reducing the need for manual
feature engineering.

How the Model works:
The combined dataset is divided by strategies for separate modeling. The
ANN architecture includes an input layer with neurons equal to the
number of features, two hidden layers with 128 and 64 neurons (ReLU
activation and 20% dropout), and an output layer with one neuron using a
linear activation for regression. Key callbacks like `EarlyStopping` and
`ReduceLROnPlateau` prevent overfitting and adjust the learning rate.
Model performance is evaluated using Mean Absolute Error (MAE). Finally,
the trained model makes `CropUtil` predictions on new, standardized
data.

Performance:
The average MAE for the ANN models of all the strategies average out to
8.17%.

1
Problem Statement

2
Demo

3
Data Cleaning

5
Results and ConclusionModel Implementation

4 6
Data Preprocessing

Model 3: Autoencoder-Random Forest Model

Why the Ensemble Autoencoder-Random forest?
Generalization to prevent overfitting, a better understanding of features and
non-linear relationships in the dataset, better predictions because of reduced
dimensions

How the Model Works:
The grouped data is first segregated by strategies to prepare it for modeling
separately. Separate Autoencoder models are created based on the separately
grouped strategy data. The model reconstructs the input data and encodes it
to a compressed version, capturing important features in a lower dimensional
space. This is stored in the ‘encoder_model’ variable. After this step, a Random
Forest predictor is trained using the encoded input set from the Autoencoder
and the target variable, which is the utilization. The trained random forest
predictor is tested using the encoded test set to make utilization predictions.

Performance:
The average MAE for the AE-RF models of all the strategies averages out to
6.15%.

1
Problem Statement

2
Demo

3
Data Cleaning

5
Results and ConclusionModel Implementation

4 6
Data Preprocessing

Result and Impact

Our Final Solution Architecture
In the first step, data cleaning is performed to eliminate any erroneous data, ensuring the dataset's reliability. The second step involves data preprocessing,
where relevant tables are combined, and the data is prepared for analysis, making it suitable for model training. Finally, in the third step, models are run,
employing separate models for each strategy to identify and provide the top three strategies with the highest utilization.

1
Problem Statement

2
Demo

3
Data Cleaning

5
Results and ConclusionModel Implementation

4 6
Data Preprocessing

We are suggesting the AE-RF model as our proposed
solution for this use case

1
Problem Statement

2
Demo

3
Data Cleaning

5
Results and ConclusionModel Implementation

4 6
Data Preprocessing

The Autoencoder-Random Forest

Ensemble model performed the

best for predicting the utilization

of Jobs, with a mean absolute

error average of ~6%

If the model is employed in

Hypertherm’s nesting workflow,

there is an average increase of

~10% in the utilization that

people get out of cutting steel

sheets

Integrating our solution into Hypertherm's approach would result in annual
savings of $181,200, prevent the loss of 23 days of a person's life each year, and
preserve 0.096 additional species in the area over the next 50 years.

Assumptions:
Each part order is one foot long and has one nest.
Only one person is working on all the orders for the entire year.
To make the calculations streamlined we assume 10% point worth of positive
impact on the metric we are considering for the calculations.

Number of Orders/year Number of Days Saved

Feet of metal Cut/ year
Number of species that may disappear/year/order

due to the impact

lbs of scrap/foot of cut
Number of species that may disappear/year due

to the impact

Current Utilization
Number of species that may disappear in the next

50 years to the impact

Years cut short (DALY)
Number of species that would be saved in the

next 50 years

Days cut short/ year Number of Days Saved

Resources($) impacted/order/year Resources($) Saved/ year

Factors Considered:

1
Problem Statement

2
Demo

3
Data Cleaning

5
Results and ConclusionModel Implementation

4 6
Data Preprocessing

1
Problem Statement

2
Demo

3
Data Cleaning

5
Results and ConclusionModel Implementation

4 6
Data Preprocessing

We solved the identified pain points in Hypertherm's workflow: time consumed
by the software and non-optimal strategy selection, both of which significantly
contributed to low raw material utilization.

Future Scope

Integrating the Model into a
Website

Scaling the model to train on
all the part inputs

Testing out other models that
might better fit our use case

Thank you!

Thank you to Marc and Robin at
Hypertherm for all their help on this
project throughout the term!

To our Mentors: Prof. Parker, Dr.
Raymond, and Ben, thanks for the
incredible opportunity.

Questions?

Appendix

Calculations for Impact slide:

MSE - Logistic Regression

Strategy -2147483648 - LR MSE: 0.0980084430462847

Strategy 0 - LR MSE: 0.0450198937374988

Strategy 1 - LR MSE: 0.026879336902438867

Strategy 2 - LR MSE: 0.011879141313046576

Strategy 4 - LR MSE: 0.02232421668214772

Strategy 8 - LR MSE: 0.02232806198457016

Strategy 16 - LR MSE: 0.018775997365779035

Strategy 32 - LR MSE: 0.021725520313180292

Strategy 64 - LR MSE: 0.020679917467253815

Strategy 128 - LR MSE: 0.02127611297982527

Strategy 256 - LR MSE: 0.01316128246361642

Strategy 512 - LR MSE: 0.023417447469896397

Strategy 1024 - LR MSE: 0.02499253496631658

Strategy 2048 - LR MSE: 0.026662445326147848

Strategy 4096 - LR MSE: 0.02580255400339677

Strategy 8192 - LR MSE: 0.02814165436948609

Strategy 16384 - LR MSE: 0.02275297703850721

MSE - ANN

Strategy -2147483648 - ANN MAE: 0.17141690402405493

Strategy 0 - ANN MAE: 0.02514191891341782

Strategy 1 - ANN MAE: 0.013655793369293621

Strategy 2 - ANN MAE: 0.005907572402820202

Strategy 4 - ANN MAE: 0.015734189601127126

Strategy 8 - ANN MAE: 0.010604672261677443

Strategy 16 - ANN MAE: 0.01066016896679092

Strategy 32 - ANN MAE: 0.01514540548180336

Strategy 64 - ANN MAE: 0.01600299332727579

Strategy 128 - ANN MAE: 0.009791450454960068

Strategy 256 - ANN MAE: 0.012629927302528729

Strategy 512 - ANN MAE: 0.014408496732857616

Strategy 1024 - ANN MAE: 0.013666928816760916

Strategy 2048 - ANN MAE: 0.010932017264043258

Strategy 4096 - ANN MAE: 0.013070337556535267

Strategy 8192 - ANN MAE: 0.012215803208491714

Strategy 16384 - ANN MAE: 0.0106639314554052

MSE - Autoencoder Random Forest Ensemble

Strategy -2147483648 - Random Forest MSE: 0.021209262390340572

Strategy 0 - Random Forest MSE: 0.01712972512382457

Strategy 1 - Random Forest MSE: 0.011136618978461396

Strategy 2 - Random Forest MSE: 0.003770892723788292

Strategy 4 - Random Forest MSE: 0.01097673187574006

Strategy 8 - Random Forest MSE: 0.008161786868054641

Strategy 16 - Random Forest MSE: 0.009344964244166013

Strategy 32 - Random Forest MSE: 0.010108515820289005

Strategy 64 - Random Forest MSE: 0.012732688856081968

Strategy 128 - Random Forest MSE: 0.008591365865944955

Strategy 256 - Random Forest MSE: 0.006884096423003518

Strategy 512 - Random Forest MSE: 0.010699315398865959

Strategy 1024 - Random Forest MSE: 0.010100297185384794

Strategy 2048 - Random Forest MSE: 0.00784009505282407

Strategy 4096 - Random Forest MSE: 0.010265539462260964

Strategy 8192 - Random Forest MSE: 0.012707406304693332

Strategy 16384 - Random Forest MSE: 0.0087109323054738

MSE - All Models

MAE - LR
Strategy -2147483648 - LR MAE: 0.1724384731017937

Strategy 0 - LR MAE: 0.17007085061048358

Strategy 1 - LR MAE: 0.12087709037506887

Strategy 2 - LR MAE: 0.07587781897573141

Strategy 4 - LR MAE: 0.10831671082297097

Strategy 8 - LR MAE: 0.11130536659789568

Strategy 16 - LR MAE: 0.10089318489413998

Strategy 32 - LR MAE: 0.11463965895750547

Strategy 64 - LR MAE: 0.10674503232528745

Strategy 128 - LR MAE: 0.11334468477553149

Strategy 256 - LR MAE: 0.09056337047297233

Strategy 512 - LR MAE: 0.11708796531329728

Strategy 1024 - LR MAE: 0.12435057973973052

Strategy 2048 - LR MAE: 0.12670126339086446

Strategy 4096 - LR MAE: 0.12620449579268

Strategy 8192 - LR MAE: 0.1336700162174162

Strategy 16384 - LR MAE: 0.1184001536864068

MAE - ANN
Strategy -2147483648 - ANN MAE: 0.1097107682471816

Strategy 0 - ANN MAE: 0.1004535755441663

Strategy 1 - ANN MAE: 0.0740200648623339

Strategy 2 - ANN MAE: 0.03738127748469544

Strategy 4 - ANN MAE: 0.07874878821943923

Strategy 8 - ANN MAE: 0.06088854574044074

Strategy 16 - ANN MAE: 0.06740776591310316

Strategy 32 - ANN MAE: 0.08809113846669805

Strategy 64 - ANN MAE: 0.09188961986987759

Strategy 128 - ANN MAE: 0.07266957436902598

Strategy 256 - ANN MAE: 0.08451832628498428

Strategy 512 - ANN MAE: 0.08299802368316325

Strategy 1024 - ANN MAE: 0.07359543907081563

Strategy 2048 - ANN MAE: 0.06385327250228227

Strategy 4096 - ANN MAE: 0.07603518800236708

Strategy 8192 - ANN MAE: 0.07218181656478946

Strategy 16384 - ANN MAE: 0.07263756478868126

MAE - Autoencoder Random Forest Ensemble

Strategy -2147483648 - Random Forest MAE: 0.09305657531236997

Strategy 0 - Random Forest MAE: 0.07994441079713896

Strategy 1 - Random Forest MAE: 0.0627151977764201

Strategy 2 - Random Forest MAE: 0.027509728272255507

Strategy 4 - Random Forest MAE: 0.0616838621334025

Strategy 8 - Random Forest MAE: 0.050668070367750534

Strategy 16 - Random Forest MAE: 0.05650405574998458

Strategy 32 - Random Forest MAE: 0.06422683678323825

Strategy 64 - Random Forest MAE: 0.07012840373321899

Strategy 128 - Random Forest MAE: 0.0579891598706541

Strategy 256 - Random Forest MAE: 0.054372319788147924

Strategy 512 - Random Forest MAE: 0.06566009398828265

Strategy 1024 - Random Forest MAE: 0.05673849683360188

Strategy 2048 - Random Forest MAE: 0.04805366126191594

Strategy 4096 - Random Forest MAE: 0.06200144543337612

Strategy 8192 - Random Forest MAE: 0.07299470779275806

Strategy 16384 - Random Forest MAE: 0.060406469730801014

MAE - All Models

Metrics used to calculate impact

Every strategy has unique correlations with various features, which is why we've incorporated all
these features and it is also why we have strategy specific models.

Libraries used

NumPy: For numerical computations and array manipulations.

Pandas: For data manipulation and analysis.

scikit-learn:
‘model_selection’ for splitting datasets into training and testing sets.

‘preprocessing’ for feature scaling.

‘ensemble’ for regression tasks using random forests.

‘metrics’ for evaluating model performance.

‘linear_model’ for linear regression models.

TensorFlow/Keras:

‘models’ for building and training neural networks.

‘layers’ for adding dense and dropout layers.

‘callbacks’ for improving model training with early stopping and learning rate reduction.

‘optimizers’ for optimizing neural networks using Adam.randomization of strategy

