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1. Introduction
Hypertherm Associates is a leading provider of industrial cutting systems, software, and consumables for
various applications. A significant aspect of Hypertherm's operations involves cutting steel parts and
providing nesting software to optimize their placement on steel sheets. However, the traditional process of
determining part placements and cutting steel sheets is often time-consuming, leading to substantial scrap
material and low utilization of steel sheets. This inefficiency increases production costs and contributes to
higher carbon emissions and environmental waste. In response to this challenge, Hypertherm has
recognized the potential of integrating artificial intelligence (AI) models into their workflow to streamline
the cutting process and reduce steel waste. This report explores the methodology employed, the AI-driven
solution proposed, and the significant impact it can have on both environmental sustainability and
enterprise efficiency. By optimizing the utilization of steel sheets and minimizing waste, this innovative
approach aims to lower carbon emissions while enhancing productivity and profitability for Hypertherm
and its customers.

1.1 Problem Statement
Hypertherm aims to leverage AI to improve part nesting on steel sheets, exceeding current utilization
rates to help customers reduce carbon footprints and cut scrap costs.

1.2 Nesting
Nesting is a process used by Hypertherm to cut sheet metal into parts according to the client's
specifications while strategically arranging them on a parent material, such as a steel plate, to maximize
material utilization and minimize waste. Our team compared the process of Nesting to the classic video
game Tetris, where players must carefully position falling tetromino shapes onto a playing field without
leaving gaps. At Hypertherm, advanced nesting software and algorithms are employed to optimize the
placement of parts on steel plates, considering factors such as part dimensions, sheet dimensions, material
usage, etc. Our goal was to identify the most efficient nesting pattern that yields the highest sheet
utilization, thereby minimizing material waste and reducing production costs. According to the
information provided by Hypertherm, there are 17 different strategies available for nesting parts on a steel
plate, each producing a different nesting pattern and varying levels of sheet utilization. Hypertherm's
nesting technology explores these strategies, evaluating factors like part orientation, spacing between
parts, and material usage to determine the optimal part placements that maximize sheet utilization.
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Fig 1: Nesting Process used by the software
1.3 Workflow and Pain Points

Phase 1: Client Requirements
Hypertherm receives three crucial pieces of information from the client:

● Raw Materials: For this project's scope, we considered steel plates to be the raw material
provided by the client.

● Time: The client then provides their availability, logistics, and timeline for the project since time
is of the essence when it comes to manufacturing,

● Order Specifications: The client then provides Hypertherm with detailed specifications for the
order, which include the projected number of parts, type of parent material, part dimensions, and
the complexity of the design.

Phase 2: Nesting Strategy Determination
After receiving the client's requirements, Hypertherm moves to the second phase, where they determine
the nesting strategy for optimizing steel plate utilization.

There are two methods employed primarily:
● Pronest Software Auto-Strategy: Hypertherm uses specialized nesting software to analyze the

order and determine the most efficient nesting strategy for the client based on myriad factors.
This process is time-consuming as it tests multiple options before finalizing the optimal strategy.

● Manual Strategy Selection: During Manual Strategy Selection, clients typically rely on prior
experience, personal preference, or external recommendations to determine the best strategy for
nesting components onto the sheet. This results in picking a strategy that is not always optimal for
the client.

Pain Points:
● Time Consumption: The most crucial pain point is the time the nesting software requires to

complete the nesting process and run different strategies. It often takes more than 4 hours or even
overnight to run a single strategy for an order, which typically consists of about 6 nests. This
prolonged computing time for each strategy significantly hampers efficiency and production
timelines. Running multiple strategies to evaluate and compare their performance becomes
increasingly time-consuming, leading to potential delays and bottlenecks in the overall production
process.
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● Randomization Inaccuracy: Manual Strategy Selection often leads to suboptimal outcomes for
clients, as reliance on past experiences, personal preferences, or external advice may not always
align with the most efficient or effective nesting strategy, potentially resulting in wasted time and
resources.

We aim to address these pain points to improve the efficiency and accuracy of their nesting strategy
determination process, ultimately optimizing steel plate utilization, enhancing their manufacturing
capabilities, and reducing carbon emissions.

Fig 2: Problem Statement Development Process

2. About the Dataset
Historical data was obtained for this project from the Hypertherm team. This dataset contained all the data
collected by Hypertherm’s nesting software. In this dataset, the tables of Parts and Nest are the only two
pertinent to our project. The schema of these tables is as follows:

2.1 Nest Data

Field Description Comments

ixJobSummary Record Index of job containing this nest

cTimesCut The number of times the nest will be cut

fOutput Has the nest been output?

cParts Total number of parts nested

cSafeZones Number of safe zones used on the nest

ixPlateType Type of plate used

dNestingTime Total time spent auto-nesting

fStrategies Auto-nesting strategies used

cMaxTorches Maximum number of torches on nest

dMaxTorchSpacing Maximum torch spacing used on nest
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dLength Sheet length

dWidth Sheet width

dArea Sheet area

ixMaterial Record index of material used

dLengthUsed Length of plate used by nested parts

dWidthUsed Width of plate used by nested parts

dCropUtil Nested utilization of parts inside of crop (if one
exists)

Nested part area / (sheet area –
area of remnants saved from nest)

dPartArea Total area of nested parts

dTrueArea Plate area used by nested parts True area of sheet.

2.2 Part Data

Field Description Comments

ixPart Part record index

ixJobSummary Record Index of job containing this part

dLength Part length

dWidth Part width

dArea Part true area Area of exterior profile – area of
cutouts

cRequired Number of parts required

cNested Number of parts nested

ixMaterial Record index of material used

fExtShape Shape of the exterior profile About 50 known shapes

dExtArea Area of the exterior profile

dExtBoundaryDist The maximum distance of any point
inside the profile to the nearest point on
the exterior profile

Uses a distance transform with
distance measured at 45-degree
increments
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dExtContainedDist The maximum unbroken distance
between any two points on the exterior
profile

The line between the two points
doesn’t intersect the profile
anywhere else

dLgIntArea Area of the largest interior profile

dLgIntBoundaryDist The maximum distance of any point
inside the profile to the nearest point on
the interior profile

Uses a distance transform with
distance measured at 45-degree
increments

dLgIntContainedDist The maximum unbroken distance
between any two points on the interior
profile

The line between the two points
doesn’t intersect the profile
anywhere else

dLgExtConArea Area of the largest concavity

dLgExtConBoundaryDist The maximum distance of any point
inside the concavity to the nearest point
on the concavity

Uses a distance transform with
distance measured at 45-degree
increments

dLgExtConContainedDist The maximum unbroken distance
between any two points on the concavity
contour

The line between the two points
doesn’t intersect the profile
anywhere else

The Nest table contains values registered after the parts have been nested. It mainly captures data about
the area of the parts nested, the sheet used for nesting and its utilization, the number of torches used for
cutting, the number of parts nested in the nest, and the dimensions and material of the sheet.

The Part table contains details that capture major trends in the dimensions of the part, like the length,
width, and area of the part, info regarding exterior and interior profile (exterior profile is the external
boundary of a part, and interior profile is the internal boundary if a part contains any cutouts in it), details
regarding concavity of a part (for example, a horseshoe part contains a concave region where other parts
could be nested), and the number of parts required to be nested and the number of parts successfully
nested by the software.

3. Data Cleaning
Pre-cleaning the Parts and Nest table contained 30 million and 8.7 million records, respectively. After
pruning erroneous data, the numbers were brought down to 11 million and 3.8 million records,
respectively. This was achieved by pruning the following anomalies from the dataset.

Nest Table:
● Records with dCropUtil = 0
● Records with dPartArea = 0
● Records with dTrueArea = 0
● Records with dLengthUsed = 0 and dLengthUsed < 0
● Records with dWidthUsed = 0 and dWidthUsed < 0
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● Records with cParts = 0
● Records with fStrategies outside of 17 strategies defined in the problem statement
● In a few Records, dLengthUsed and dWidthUsed are more than the dLength and dWidth, so we

selected a tolerance of 2 and deleted rows where the deviation is more than this, and corrected the
values within this tolerance

● Rows where dPartArea is greater than dTrueArea
● dCroputil was calculated based on dTrueArea for over 60% of data and on dArea for the

remaining records. Standardized to a calculation based on dTrueArea based on feedback from
Hypertherm

Part Table:
● Rows with dLength = 0 and dLength < 0
● Rows with dWidth = 0 and dWidth < 0
● Rows with dArea = 0 and dArea < 0
● Rows with cNested = 0 and cNested < 0

Finally, the cNested (number of parts nested) and dArea (area of part) in a job from the Part table should
be used and matched with the cParts (number of parts in the nest) and dPartArea (area of parts in the nest)
nests within a job and the area of nested parts within a job to ensure synergy between the Part and Nest
tables.

4. Data Preprocessing
For experimenting with ML models, we decided to use the following columns:
[dPartArea_Job, dLength_Avg, dWidth_Avg, dArea_Avg, cNested_Avg, fExtShape_Avg, dExtArea_Avg,
dExtBoundaryDist_Avg, dExtContainedDist_Avg, dLgIntArea_Avg, dLgIntBoundaryDist_Avg,
dLgIntContainedDist_Avg,dLgExtConArea_Avg,dLgExtConBoundaryDist_Avg,
dLgExtConContainedDist_Avg]

All of these columns are obtained from the Part table. The dPartArea_Job is the sum of the area of all the
parts in a job, calculated using the fields dArea and cNested of all parts in a job. All the other columns are
averaged with other part records in a job. This forms the features to train ML models, the target being the
CropUtil obtained from the Nest table. Our aim is to train 17 regression ML models (one for each nesting
strategy) to predict output crop utilization for each strategy. Such predictive output will help choose the
optimal strategy for a given combination of parts.

We also experimented with taking all records in the Part table individually and using them as a sequence
input for each job into an LSTM model. Still, since this approach didn’t yield promising results, we
decided to drop it.

5. Models
Multiple machine-learning techniques were explored and evaluated to model and predict utilization
accurately. These included linear regression, artificial neural networks (ANNs), and an ensemble
approach combining autoencoders with random forests. The primary objective was to identify the most
suitable modeling approach for each specific strategy present in the dataset.
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Strategy-Aware Modeling
A crucial aspect of the modeling process was the development of individual models tailored to each
nesting strategy. This strategy-aware approach offered several significant advantages:

Strategy-Specific Learning
By segregating the data and training models independently for each strategy, the algorithms could
specialize in understanding the unique nuances, distributions, and intricate patterns inherent to each
strategy's data. This tailored learning approach provided several benefits:

● Enhanced Specialization: Models could focus on each strategy's specific characteristics without
being influenced by data from other strategies.

● Reduced Cross-Strategy Interference: Data segregation ensured the learning process was free
from bias by mixing different strategies.

● Improved Accuracy: Models trained on specific strategies were better equipped to make accurate,
strategy-aligned predictions.

After experimenting with various models, including Lasso and Ridge regression and LSTMs, which did
not yield optimal results, the linear regression algorithm was chosen as the benchmark due to its superior
MAE performance on this dataset. The details of these experiments are discussed in the following section.

5.1 Linear Regression
Linear regression is one of the most commonly used and well-established machine learning algorithms for
regression problems. It is easy to implement, interpretable, and serves as a reasonable baseline model to
compare against more complex techniques.

5.1.1 Model Architecture
The linear regression modeling process begins by grouping the dataset according to the different
strategies, resulting in separate subsets of data for each strategy. Individual linear regression models are
then trained independently on these strategy-specific datasets to predict utilization tailored to the unique
data distributions within each strategy group.

Linear regression aims to find the best-fitting linear equation (y = mx + b) to map the input features (x) to
the target utilization variable (y) for the data points corresponding to a given strategy. The linear
regression algorithm fits this equation by minimizing the sum of squared residuals between the predicted
and actual utilization values during the training process.

5.1.2 Performance Evaluation
The average mean absolute error (MAE) for the linear regression models across all strategies is 11.36%.

5.2 Artificial Neural Networks (ANN)
ANNs can automatically learn and extract significant features from the raw input data through their
hidden layers, reducing the need for manual feature engineering. Their flexibility and ability to model
non-linear relationships make them an excellent choice for this regression problem.
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5.2.1 Model Architecture
The ANN modeling process begins by standardizing the input data using sklearn's StandardScaler. The
standardized data is then split into training and validation sets. A randomized search is performed over
key hyperparameters to optimize the ANN architecture, including the learning rate, dropout rates for the
hidden layers, and the number of neurons in the two hidden layers. This hyperparameter tuning utilizes
5-fold cross-validation on the training set to evaluate a grid of hyperparameter combinations.

The optimal configuration is selected from the set
of hyperparameters that results in the lowest
average mean absolute error (MAE) across the
cross-validation folds. This optimized architecture
is then used to create an ANN model consisting of
an input layer with neurons equal to the number of
features, two hidden layers with the tuned number
of neurons and dropout rates, and an output layer
with a single neuron for the regression output.

This optimized ANN model is trained on the
training data using the Adam optimizer. During
training, callbacks like EarlyStopping and
ReduceLROnPlateau help prevent overfitting and
dynamically adjust the learning rate based on

validation loss. The performance of the trained model is evaluated on the held-out validation set using
MAE as the metric. Once trained, the ANN model can predict new, previously unseen data after
standardizing the inputs.

5.2.2 Performance Evaluation
The average MAE across the different ANN models is 8.17%, lower than the regression model.

5.3 Autoencoder-Random Forest Model
In predictive analytics, combining different models enhances prediction accuracy and efficiency. Based on
preliminary research, leveraging lower-dimensional feature learning alongside a random forest regressor
seemed highly effective for Hypertherm's use case and the dataset provided. The autoencoder reduces
dimensionality and extracts key features, while the Random Forest model makes robust, unbiased
predictions. This ensemble creates a precise and reliable output for optimizing steel utilization.

5.3.1 Model Architecture
The hybrid model architecture comprises two main components: the Autoencoder and the Random Forest
regressor.

Autoencoder:

The autoencoder is an artificial neural network
designed for unsupervised learning. It consists of
an input layer, an encoder layer, a bottleneck
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(latent space), and a decoder layer. In this setup, the input layer has 17 units, corresponding to the 17
columns of the dataset.

The encoder compresses this input data into a lower-dimensional space with 10 units, effectively
capturing the most significant features while discarding noise and redundancy. The bottleneck layer
represents this compressed data. Although the decoder layer typically reconstructs the input data from the
encoded form, in this model, the focus remains on the encoded data passed to the next component.

Random Forest Regressor:
After the encoding process, the compressed data is fed into a Random Forest regressor. This ensemble
learning method comprises 100 decision trees, providing a well-rounded mechanism without biases for
making predictions. The Random Forest regressor uses the encoded data to learn patterns and
relationships, enabling it to predict steel sheet utilization effectively.

Data Flow and Prediction
The process begins with the dataset, which includes 17 features related to steel sheet utilization strategies.
The autoencoder first processes this data, reducing it to a 10-dimensional encoded form. The Random
Forest regressor then uses this encoded data to predict the utilization of each strategy.

5.3.2 Performance Evaluation
The average MAE across the models built on different strategies is 6.15%, the best of the models we
tested for this use case. Hence, the AE-RF is the proposed model for making steel utilization predictions.

6. Final Proposed Solution and Result:

Fig 3: Final Solution Architecture

Following data cleaning, preprocessing, and modeling stages, the ultimate solution delivers utilization
predictions for all strategies. A consolidated function incorporating all models facilitates the prediction of
utilization for new inputs and outputs of the top three strategies with the highest anticipated utilization.
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Hypertherm receives this output, enabling them to select the optimal strategy among the three according
to their preferences while considering the raw material usage.

By leveraging historical data as input across all 17 models developed for various strategies, the
predictions generated exhibit an average 10% increase in utilization compared to existing methods,
thereby enhancing the efficiency and effectiveness of strategies for Hypertherm and their clientele.

Fig 4: Output of the Model based on Historical Data

6.1 Impact
There were 3 impact factors that we considered:

6.1.1 Common Assumptions
Pre-Implementation:

● Number of Orders/year: This indicates that Hypertherm received 302,000 orders annually
before integrating RelaxedTherm’s implementation into its workflow.

● Feet of Metal Cut/year: The company cuts 302,000 feet of metal each year to fulfill the orders.
The team considered that each order is 1 foot long and has 1 nest.

● Lbs of scrap/foot of cut: For every foot of metal cut, 3.72 pounds of scrap metal was generated
as waste.

Post-Implementation:
● Number of Orders/year: After integrating RelaxedTherm's implementation in their workflow,

the number of orders remained unchanged at 302,000 per year.
● Feet of metal Cut/year: The total footage of metal cut remained the same at 302,000 feet. The

team considered that each order is 1 foot long and has 1 nest.
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● Lbs of scrap/foot of cut: The amount of scrap metal generated per foot of cut decreased to 2.74
pounds due to the 10% increased utilization.

1. Human Health Impact:
To assess the human health impact of excessive carbon emissions, we calculated the number of years
lived with disability and life years lost/ year, quantified in the Disability-Adjusted Life Years (DALYs)
metric.

Pre-Implementation:
● Current Utilization: Hypertherm's nesting process had a utilization rate of 62%, suggesting

room for improvement in efficiency.
● Years cut short (DALY): The health impact of the metal-cutting process resulted in a loss of

0.00000209 years of healthy life per year per order due to premature death or disability.
● Days cut short/year: Due to excessive carbon emissions, the metal-cutting process led to 230.38

days of healthy life lost per year for 302,000 orders for one person.

Post-Implementation:
● Current Utilization: The utilization rate improved to 72%, suggesting better efficiency in the

metal-cutting process.
● Years cut short (DALY): The health impact of the metal-cutting process was significantly

reduced, with only 2.0273E-06 years of healthy life lost per year per order.
● Days cut short/year: The number of days of healthy life lost per year decreased to 223.47 days, a

reduction compared to before the implementation.

The integration saved 6.91 days of healthy life per year for 302,000 orders for one person, indicating an
improvement in the overall health impact of the metal-cutting process.

2. Ecosystem impact:
This factor indicates the product of the number of species facing extinction due to excessive carbon
emissions, the geographic area they inhabit, and the impact duration quantifies the overall biodiversity
loss.

Pre-Implementation:
● Number of species that may disappear/ year/ order due to excessive carbon emissions is 0.00000001.

This suggests that before RelaxedTherms implementation was integrated, the excessive carbon emissions
were causing several species to go extinct per order per year.

● Number of species that may disappear per year due to the impact is 0.0112344 for 302000 orders. This
indicates that before mitigation, the impact was causing the potential extinction of approximately
0.0112344 species per year while Hypertherm ran at full capacity.

● Number of species that may disappear in the next 50 years due to the impact is 0.56172 for 302000
orders which essentially means that over a longer time frame of 50 years, the pre-implementation impact
was projected to cause the potential extinction of 0.56172 species, which is a more substantial number.

Post-Implementation:
● Number of species that may disappear per year per order due to excessive carbon emissions is

9.7E-09. This suggests that after integrating RelaxedTherms, the number of species potentially going
extinct per order per year due to the impact was reduced to an even smaller number of 9.7E-09, a
significant reduction compared to the pre-implementation value.
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● Number of species that may disappear per year due to the impact is 0.00802964 which means that the
overall number of species potentially going extinct per year due to the impact was also reduced to
0.00802964 after integrating RelaxedTherms implementation.

● Number of species that may disappear in the next 50 years due to the impact would be 0.401481979
which means over the next 50 years, the post-implementation impact is projected to cause the potential
extinction of 0.401481979 species.

By subtracting the post-implementation value (0.401481979) from the pre-implementation value
(0.56172), we can see that our implementation would potentially save 0.160238021 species from
extinction over the next 50 years due to the impact.

3. Resource Impact:
The resource impact represents the future value of resources unavailable due to their current utilization.

Pre-implementation:
● Number of resources impacted/order/year: On average, $6/ order was impacted for every order

placed within a year, indicating a considerable strain on resource availability.
● Number of resources impacted/year: The total number of resources impacted annually was

$1,812,000 for 302000 orders, highlighting the substantial resource consumption before the
RelaxedTherms solutions were implemented.

Post-implementation:
● Number of resources impacted/order/year: After the team's implementation, the average

amount saved per order placed annually decreased to $5.82/ order, reflecting a noticeable
improvement in resource utilization efficiency.

● Number of resources impacted/year: The total number of resources impacted yearly saw a
significant reduction to $1,757,640 for 302000 orders which annually underscores the positive
impact of our integration in terms of resource conservation and monetary benefits.

This hints that the future value of resources that would be unavailable due to their utilization in the
present is more pre-implementation than post-implementation, which essentially suggests that
Hypertherm would save $181200/year for 302000 orders.

Fig 5: Calculation for Impact
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6.1.2 Realistic Impacts:
1. Resource Impacts:

The resource impact represents the future value of resources unavailable due to their current utilization.
Considerations:

● Hypertherm’s medium to large customers might cut 300,000 ft to 1.3 million ft per year. Using
this data (provided by the client), we consider the average order to be 800,000 ft per year per
customer.

● We believe that Hypertherm has 1000 customers, and each customer gives them 1 order of
800,000 ft per year.

Results:
● Considering the factors considered above (Number of resources impacted/order/year & Number

of resources impacted/year), the team concluded that Hypertherm’s $480,000,000 worth of
resources would be saved.

2. Carbon Emission Impacts:
The resource impact represents the future value of resources unavailable due to their current utilization.
Considerations:

● Hypertherm’s medium to large customers might cut 300,000 ft to 1.3 million ft per year. Using
this data (provided by the client), we consider the average order to be 800,000 ft per year per
customer.

● We believe that Hypertherm has 1000 customers, and each customer gives them 1 order of
800,000 ft per year.

Results:
● Considering the above factors (KgCO2e emitted/order/year & KgCO2e emitted/order/year), the

team concluded that Hypertherm would emit less than 25263157.89 KgCO2e/ year.

Fig 6&7: Realistic Calculation for Impact

7. Conclusion:
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In conclusion, through this project, we have performed extensive data exploration, analysis, and cleaning
resulting in over 60% of data being pruned. Multiple ML and neural network-based models were
evaluated, with the Linear Regression model serving as a baseline model with an average MAE of 11%
and the Autoencoder - Random Forest Regression model giving the best performance with an average
MAE of 6%. With the help of the Autoencoder - Random Forest model, we ran a regressive analysis on
the historical dataset. We found that if the predicted strategy was used for all the previous nesting jobs, an
average of 10% increase in utilization could have been achieved, showcasing the potential of integrating
our project into Hypertherm’s nesting software.

8. Future Scope
● Integrating the Model into a Website/Application: To facilitate broader accessibility and

user-friendly interactions, the modeling pipeline could be integrated into a web-based platform or
application. This would involve developing a user interface where users can input relevant data,
obtain utilization predictions, and recommend top strategies.

● Scaling the Model with Different Input Metrics: The current implementation utilizes part
averages as input features. However, exploring and incorporating different metrics or input data
aggregations could improve prediction accuracy and provide more comprehensive insights.

● Testing Out Other Models: While the current implementation is an ensemble of autoencoders with
random forests, machine learning is rapidly evolving. Exploring and evaluating other
state-of-the-art models could yield improved performance or uncover new insights.
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Appendix

Mean Absolute Error for all Models

16



ENGM 204 Data Analytics Project Lab

Metrics used to calculate the impact

Every strategy has unique correlations with various features, which is why we've incorporated all
these features, and it is also why we have strategy strategy-specific model
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